Issues in DWDM Testing

Mike Harrop mike.harrop@exfo.com

- > What your Equipment Measurement system doesn't tell you
- Challenges with 100G
- > Other impairments in optical systems

Rise of EMS

- What is EMS?
- Uses Optical Channel Performance Monitoring using embedded device in EDFA's, ROADM's etc to monitor channels.
 - Provide Power, Wavelength & OSNR

Optical Channel Performance Monitoring

Functional Schematic

Optical Channel Performance Monitoring

> Example output from OCPM for 10G, 100GHz Channel Spacing

An example of a major European operator

	Ch. #	OSNR (dB)		
		EMS	EXFO	Δ
	1	35.3	23.4	11.9
	2	30.1	24.2	5.9
	3	22.0	24.9	2.9
	4	21.2	24.0	2.8
	5	27.4	28.0	0.6
	6	36.9	27.9	9.0

EMS Conclusion

EMS are very limited in accuracy (even where IEC valid) Limited to 2.5 & 10G systems at 100GHz channel spacing

Not valid where we have ROADMs

Large errors at 50GHz channel spacing

An In-Band capable OSA is required to get an accurate picture of the network.

100G OSNR story

Why IEC fails in coherent networks

Case 1: Network operates at 40 Gb/s or 100 Gb/s

- Coherent 40G and 100G signals are closely spaced and overlap.
- -The IEC interpolation method leads to an over-estimation of the noise level.
- It creates a false sense of problem.

Why IEC fails in coherent networks

Case 2: ROADM present in network

- A ROADM contains filters that reduce inter-channel noise.
- -The traditional interpolation method leads to an underestimation of the noise.
- It creates a false sense of security.

Why OSA's fail in coherent networks

- Same limitations apply for 100G
 - > ROADM's
 - > Spectrally wide
 - > Filtering

- Polarization-based in-band OSNR does not work because signal looks unpolarized (two orthogonal pol's).
 - WDM-aware does not work
 - pol. nulling does not work

Need coherent OSNR (reference-based!)

Tap 1

Tap 2

- Can measure via Taps -> No service interruption
- Rely on same Maths as WDM-aware
- Use reference-acquired shape (Tap 1)
- Find noise contribution

EXFO's approach – Reference-Based

 Use Reference Measurement as signal shape to find noise

📖 EXFO Optical Spectrum Analyzer (OSA_Test_10_1_64.osawdm) Channel Results | Global Results Graph 2 0 Sun -10 Ê -20 0 gp -30 -50 -60 -70 Θ 1546.5 1546.6 1546.7 1546.8 1546.9 1547 1547.1 1547.2 1547.3 nm AA RBW: 0.036 nm

Tap 2

Showing with Tap 2 to demonstrate reference with residual OSNR but works well of course with Tap 1

Tap 3

So is coherent OSNR available?

 EXFO now offers reference-based method as analysis service:

> The customer acquires traces at the transmitter and at the location of interest with EXFO OSA.

The ONLY solution available now in the market!!

Impairments in Next Gen Optical Systems

Next Generation Optical System

Brown Field Installation

Mix & Match 10G, 40G & 100G waves on a fiber as

- **Increased network complexity**
- **New impairments to consider**

Interchannel crosstalk: In dense channel plans, when neighbor channels have a non negligible portion of their spectrum that extends within the channel bandpass of a given signal.

OSNR based on ASE noise will give an OSNR that doesn't equate to the BER the system.

Nonlinear Impairments:

- When signals interact with one another.
 - Have amplitude & phase modulation signals next to one another.
 - Gives rise to **cross-phase modulation**
- Lead to partial depolarization of neighbouring channels signals

- Behaves like additional noise on top of the ASE

– can degrade BER

Carrier leakage

- In Phase modulated transmission, a
 CW source is modulated and is
 polarisation dependant.
- If poorly aligned portion of signal transmitted though system unmodulated.

- Wasted power & extra noise

Conclusion

- > Challenges in measuring OSNR in ROADM based networks
- > Challenges to overcome in measuring 100G OSNR
- Other contributors include, non-linear impairments, X-talk, misaligned modulators.
 These will add to the noise and will effect BER.

Network operators want more visibility of their network

